Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
1.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613784

RESUMO

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Assuntos
Camundongos Endogâmicos C57BL , Esqualeno Mono-Oxigenase , Animais , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/biossíntese , Colesterol/análogos & derivados , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
2.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685037

RESUMO

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Assuntos
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiologia , Camundongos , Animais , Humanos , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Ésteres do Colesterol/metabolismo
3.
J Biomol Struct Dyn ; 42(4): 1778-1794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37060321

RESUMO

Caesalpinia pulcherrima, or peacock flower, has been a subject of cancer therapeutics research, showing promising anti-cancer and anti-metastatic properties. The present research aims to investigate the anti-metastatic potential of the flower, through bioinformatics approaches. Metastasis targets numbering 471 were identified through overlap analysis following NCBI gene, Gene Card and OMIM query. Phytocompounds of the flower were retrieved from PubChem and their protein interactions predicted using Super-PRED and TargetNet. The 28 targets that overlapped with the predicted proteins were used to generate STRING >0.7. Enrichment analysis revealed that C. pulcherrima may inhibit metastasis through angiogenesis-related and leukocyte migration-related pathways. HSP90AA1, ESR1, PIK3CA, ERBB2, KDR and MMP9 were identified as potential core targets while and 6 compounds (3-[(4-Hydroxyphenyl)methylidene]-7,8-dimethoxychromen-4-one (163076213), clotrimazole (2812), Isovouacapenol A (636673), [(4aR,5R,6aS,7R,11aS,11bR)-4a-hydroxy-4,4,7,11b-tetramethyl-9-oxo-1,2,3,5,6,6a,7,11a-octahydronaphtho[2,1-f][1]benzofuran-5-yl] benzoate (163104827), Stigmast-5-en-3beta-ol (86821) and 4,2'-dihydroxy-4'-methoxychalcone (592216)) were identified as potential core compounds. Molecular docking analysis and molecular dynamics simulations investigations revealed that ERBB2, HSP90AA1 and KDR, along with the newly discovered 163076213 compound to be the most significant metastasis targets and bioactive compound, respectively. These three core targets demonstrated interactions consistent with angiogenesis and leukocyte migration pathways. Furthermore, potentially novel interactions, such as KDR-MMP9, KDR-PIK3CA, ERBB2-HSP90AA1, ERBB2-ESR1, ERBB2-PIK3CA and ERBB2-MMP9 interactions were identified and may play a role in crosslinking the aforementioned metastatic pathways. Therefore, the present study revealed the main mechanisms behind the anti-metastatic effects of C. pulcherrima, paving the path for further research on these compounds and proteins to accelerate the research of cancer therapeutics and application of C. pulcherrima.Communicated by Ramaswamy H. Sarma.


Assuntos
Caesalpinia , Colesterol/análogos & derivados , Simulação de Acoplamento Molecular , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Flores , Classe I de Fosfatidilinositol 3-Quinases
4.
Biochem Biophys Res Commun ; 591: 82-87, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999258

RESUMO

Steroid hormone synthesis in steroidogenic cells requires cholesterol (Ch) delivery to/into mitochondria via StAR family trafficking proteins. In previous work, we discovered that 7-OOH, an oxidative stress-induced cholesterol hydroperoxide, can be co-trafficked with Ch, thereby causing mitochondrial redox damage/dysfunction. We now report that exposing MA-10 Leydig cells to Ch/7-OOH-containing liposomes (SUVs) results in (i) a progressive increase in fluorescence probe-detected lipid peroxidation in mitochondrial membranes, (ii) a reciprocal decrease in immunoassay-detected progesterone generation, and ultimately (iii) loss of cell viability with increasing 7-OOH concentration. No significant effects were observed with a phospholipid hydroperoxide over the same concentration range. Glutathione peroxidase GPx4, which can catalyze lipid hydroperoxide detoxification, was detected in mitochondria of MA-10 cells. Mitochondrial lipid peroxidation and progesterone shortfall were exacerbated when MA-10 cells were treated with Ch/7-OOH in the presence of RSL3, a GPx4 inhibitor. However, Ebselen, a selenoperoxidase mimetic, substantially reduced RSL3's negative effects, thereby partially rescuing the cells from peroxidative damage. These findings demonstrate that co-trafficking of oxidative stress-induced 7-OOH can disable steroidogenesis, and that GPx4 can significantly protect against this.


Assuntos
Colesterol/análogos & derivados , Células Intersticiais do Testículo/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Esteroides/metabolismo , Animais , Carbolinas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/metabolismo , Fluorescência , Isoindóis/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Compostos Organosselênicos/farmacologia , Fosfatidilcolinas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Progesterona/biossíntese , Substâncias Protetoras/farmacologia
5.
Biochim Biophys Acta Biomembr ; 1863(12): 183773, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517001

RESUMO

Despite the progress made in recent years in the field of oncology, the results of glioblastoma treatment remain unsatisfactory. In this paper, cholesterol derivatives - oxysterols - have been investigated in the context of their anti-cancer activity. First, the influence of three oxysterols (7-K, 7ß-OH and 25-OH), differing in their chemical structure, on the properties of a model membrane imitating glioblastoma multiforme (GBM) cells was investigated. For this purpose, the Langmuir monolayer technique was applied. The obtained results clearly show that oxysterols modify the structure of the membrane by its stiffening, with the 7-K effect being the most pronounced. Next, the influence of 7-K on the nanomechanical properties of glioblastoma cells (U-251 line) was verified with AFM. It has been shown that 7-K has a dose-dependent cytotoxic effect on glioblastoma cells leading to the induction of apoptosis as confirmed by viability tests. Interestingly, significant changes in membrane structure, characteristic for phospholipidosis, has also been observed. Based on our results we believe that oxysterol-induced apoptosis and phospholipidosis are related and may share common signaling pathways. Dysregulation of lipids in phospholipidosis inhibit cell proliferation and may play key roles in the induction of apoptosis by oxysterols. Moreover, anticancer activity of these compounds may be related to the immobilization of cancer cells as a result of stiffening effect caused by oxysterols. Therefore, we believe that oxysterols are good candidates as new therapeutic molecules as an alternative to the aggressive treatment of GBM currently in use.


Assuntos
Antineoplásicos/farmacologia , Colesterol/farmacologia , Glioblastoma/tratamento farmacológico , Oxisteróis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colesterol/análogos & derivados , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Microscopia de Força Atômica , Transdução de Sinais/efeitos dos fármacos
6.
Redox Biol ; 46: 102096, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418596

RESUMO

Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention.


Assuntos
Colesterol , Peróxidos Lipídicos , Colesterol/análogos & derivados , Peroxidação de Lipídeos , Estresse Oxidativo , Fosfolipídeos
7.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165169

RESUMO

Cationic liposomes can be intravenously injected to deliver short interfering (si)RNAs into the lungs. The present study investigated the effects of sterol derivatives in systemically injected siRNA/cationic liposome complexes (siRNA lipoplexes) on gene­knockdown in the lungs of mice. Cationic liposomes composed of 1,2­dioleoyl­3­trimethylammonium­propane or dimethyldioctadecylammonium bromide (DDAB) were prepared as a cationic lipid, with sterol derivatives such as cholesterol (Chol), ß­sitosterol, ergosterol (Ergo) or stigmasterol as a neutral helper lipid. Transfected liposomal formulations composed of DDAB/Chol or DDAB/Ergo did not suppress the expression of the luciferase gene in LLC­Luc and Colon 26­Luc cells in vitro, whereas other formulations induced moderate gene­silencing. The systemic injection of siRNA lipoplexes formulated with Chol or Ergo into mice resulted in abundant siRNA accumulation in the lungs. In comparison, systemically injected DDAB/Chol or DDAB/Ergo lipoplexes of Tie2 siRNA effectively increased the suppression of the Tie2 mRNA expression in the lungs of mice. These findings indicated that DDAB/Chol and DDAB/Ergo liposomes could function as vectors for siRNA delivery to the lungs.


Assuntos
Cátions/farmacologia , Técnicas de Silenciamento de Genes/métodos , Lipossomos/farmacologia , Pulmão , RNA Interferente Pequeno/administração & dosagem , Esteróis/química , Esteróis/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Colesterol/análogos & derivados , Sistemas de Liberação de Medicamentos , Feminino , Inativação Gênica , Camundongos , Camundongos Endogâmicos BALB C , Compostos de Amônio Quaternário , Transfecção
8.
Eur J Med Chem ; 221: 113529, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004471

RESUMO

Inhibition of FGF/FGFR signaling is a promising strategy for the treatment of malignances dependent from FGF stimulation, including multiple myeloma (MM). The steroidal derivative NSC12 (compound 1) is a pan-FGF trap endowed with antitumor activity in vivo. Chemical modifications of compound 1 were explored to investigate structure-activity relationships, focusing on the role of the bis(trifluoromethyl)1,3-propanediol chain, the stereochemistry at C20 and functionalization of C3 position. Our studies unveiled compound 25b, the pregnane 3-keto 20R derivative of compound 1 as an effective agent, blocking the proliferation of MM cells in vitro by inhibiting FGF-dependent receptor activation and slowing MM growth in vivo. Importantly, the absence of the hydroxyl group at C3 prevents binding to estrogen receptors, which might concur to the antitumor activity observed for compound 1, leading to a specific FGF/FGFR system inhibitor, and further supporting the role of FGFR in anticancer therapy in MM.


Assuntos
Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/análogos & derivados , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853940

RESUMO

Helicobacter pylori, a pathogen responsible for gastric cancer, contains a unique glycolipid, cholesteryl-α-D-glucopyranoside (CGL), in its cell wall. Moreover, O-glycans having α1,4-linked N-acetylglucosamine residues (αGlcNAc) are secreted from gland mucous cells of gastric mucosa. Previously, we demonstrated that CGL is critical for H. pylori survival and that αGlcNAc serves as antibiotic against H. pylori by inhibiting CGL biosynthesis. In this study, we tested whether a cholesterol analog, cholest-4-en 3-one (cholestenone), exhibits antibacterial activity against H. pylori in vitro and in vivo. When the H. pylori standard strain ATCC 43504 was cultured in the presence of cholestenone, microbial growth was significantly suppressed dose-dependently relative to microbes cultured with cholesterol, and cholestenone inhibitory effects were not altered by the presence of cholesterol. Morphologically, cholestenone-treated H. pylori exhibited coccoid forms. We obtained comparable results when we examined the clarithromycin-resistant H. pylori strain "2460." We also show that biosynthesis of CGL and its derivatives cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside and cholesteryl-6-O-phosphatidyl-α-D-glucopyranoside in H. pylori is remarkably inhibited in cultures containing cholestenone. Lastly, we asked whether orally administered cholestenone eradicated H. pylori strain SS1 in C57BL/6 mice. Strikingly, mice fed a cholestenone-containing diet showed significant eradication of H. pylori from the gastric mucosa compared with mice fed a control diet. These results overall strongly suggest that cholestenone could serve as an oral medicine to treat patients infected with H. pylori, including antimicrobial-resistant strains.


Assuntos
Colestenonas/farmacologia , Colesterol/análogos & derivados , Helicobacter pylori/metabolismo , Acetilglucosamina/farmacologia , Animais , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Colestenonas/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Feminino , Glucosiltransferases/metabolismo , Glicolipídeos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia
10.
J Biochem ; 170(2): 239-243, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33846725

RESUMO

The translocator protein (TSPO) is a five-helix transmembrane protein localized to the outer mitochondria membrane. Radioligand binding assays and chemical crosslinking showed TSPO to be a high affinity cholesterol-binding protein. In this report, we show that TSPO in mitochondrial fractions from MA-10 mouse tumour Leydig cells can interact directly and competitively with the clickable photoreactive cholesterol analogue. PhotoClick cholesterol showed saturable photoaffinity labelling of TSPO that could be specifically immunoprecipitated with anti-TSPO antibody, following the click reaction with the fluorescent-azide probe, tetramethylrhodamine (TAMRA)-azide. Moreover, excess cholesterol reduced the photolabelling of both total mitochondrial proteins and TSPO. Together, the results of this study demonstrated direct binding of PhotoClick cholesterol to TSPO and that this interaction occurs at physiologically relevant site(s).


Assuntos
Colesterol/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Receptores de GABA/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Colesterol/análogos & derivados , Colesterol/química , Química Click/métodos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/química , Elastase Pancreática/metabolismo , Processos Fotoquímicos , Receptores de GABA/química
11.
Biomolecules ; 11(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669566

RESUMO

BACKGROUND: Several factors could lead to lipid disturbances observed in cystic fibrosis (CF). This study aimed to assess sterol homeostasis in CF and define potential exogenous and endogenous determinants of lipid dysregulation. METHODS: The study involved 55 CF patients and 45 healthy subjects (HS). Sterol concentrations (µg/dL) were measured by gas chromatography/mass spectrometry. CF was characterised by lung function, pancreatic status, liver disease and diabetes coexistence, Pseudomonas aeruginosa colonisation and BMI. CFTR genotypes were classified as severe or other. RESULTS: Campesterol and ß-sitosterol concentrations were lower (p = 0.0028 and p < 0.0001, respectively) and lathosterol levels (reflecting endogenous cholesterol biosynthesis) were higher (p = 0.0016) in CF patients than in HS. Campesterol and ß-sitosterol concentrations were lower in patients with a severe CFTR genotype, pancreatic insufficiency and lower pancreatic enzyme dose (lipase units/gram of fat). In multiple regression analyses, ß-sitosterol and campesterol concentrations were predicted by genotype and pancreatic insufficiency, whereas cholesterol and its fractions were predicted by phytosterol concentrations, age, dose of pancreatic enzymes, nutritional status and genotype. CONCLUSIONS: Independent determinants of lipid status suggest that malabsorption and pancreatic enzyme supplementation play a significant role in sterol abnormalities. The measurement of campesterol and ß-sitosterol concentrations in CF patients may serve for the assessment of the effectiveness of pancreatic enzyme replacement therapy and/or compliance, but further research is required.


Assuntos
Fibrose Cística/sangue , Fibrose Cística/genética , Insuficiência Pancreática Exócrina/sangue , Insuficiência Pancreática Exócrina/genética , Genótipo , Esteróis/sangue , Adolescente , Adulto , Antropometria , Colesterol/análogos & derivados , Colesterol/farmacologia , Fibrose Cística/complicações , Terapia de Reposição de Enzimas , Insuficiência Pancreática Exócrina/complicações , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Homeostase , Humanos , Lipídeos/química , Masculino , Pessoa de Meia-Idade , Pâncreas/enzimologia , Fitosteróis/sangue , Fitosteróis/farmacologia , Sitosteroides/farmacologia , Adulto Jovem
12.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671690

RESUMO

Proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus, results from an inflammation-sustained interplay among endothelial cells, neurons, and glia. Even though anti-vascular endothelial growth factor (VEGF) interventions represent the therapeutic option for PDR, they are only partially efficacious. In PDR, Müller cells undergo reactive gliosis, produce inflammatory cytokines/chemokines, and contribute to scar formation and retinal neovascularization. However, the impact of anti-VEGF interventions on Müller cell activation has not been fully elucidated. Here, we show that treatment of MIO-M1 Müller cells with vitreous obtained from PDR patients stimulates cell proliferation and motility, and activates various intracellular signaling pathways. This leads to cytokine/chemokine upregulation, a response that was not mimicked by treatment with recombinant VEGF nor inhibited by the anti-VEGF drug ranibizumab. In contrast, fibroblast growth factor-2 (FGF2) induced a significant overexpression of various cytokines/chemokines in MIO-M1 cells. In addition, the FGF receptor tyrosine kinase inhibitor BGJ398, the pan-FGF trap NSC12, the heparin-binding protein antagonist N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe Boc2, and the anti-inflammatory hydrocortisone all inhibited Müller cell activation mediated by PDR vitreous. These findings point to a role for various modulators beside VEGF in Müller cell activation and pave the way to the search for novel therapeutic strategies in PDR.


Assuntos
Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proliferação de Células , Células Cultivadas , Colesterol/análogos & derivados , Colesterol/farmacologia , Retinopatia Diabética/cirurgia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Humanos , Hidrocortisona/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Ranibizumab/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vitrectomia
13.
Am J Physiol Cell Physiol ; 320(5): C916-C925, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760662

RESUMO

Niemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol are not fully understood due to the lack of a suitable NPC1L1 substrate that can be traced by fluorescence imaging and biochemical methods. 27-Alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol. However, it is not known whether alkyne cholesterol is absorbed via an NPC1L1-dependent pathway. We aimed to determine whether alkyne cholesterol is a substrate for NPC1L1 in intestinal cells. Human intestinal epithelial Caco2 cells were incubated with micelles containing alkyne cholesterol in the presence or absence of EZE. Small intestinal closed loops in C57BL/6J mice were injected with micelles containing alkyne cholesterol with or without EZE. Alkyne cholesterol esterification in Caco2 cells was significantly inhibited by EZE and by inhibitor of clathrin-mediated endocytosis Pitstop 2. The esterification was similarly reduced by inhibitors of the acyl-CoA cholesterol acyltransferase (ACAT). Alkyne cholesterol efficiently labeled the apical membrane of Caco2 cells and the amount retained on the membrane was significantly increased by EZE as judged by accessibility to exogenous cholesterol oxidase. In mouse small intestine, the presence of EZE reduced total alkyne cholesterol uptake by ∼75%. These data show that alkyne cholesterol acts as a substrate for NPC1L1 and may serve as a nonradioactive tracer to measure cholesterol absorption in both in vitro and in vivo models.


Assuntos
Colesterol/metabolismo , Células Epiteliais/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Transporte Biológico , Células CACO-2 , Colesterol/análogos & derivados , Endocitose , Células Epiteliais/efeitos dos fármacos , Ezetimiba/farmacologia , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Camundongos Endogâmicos C57BL
14.
Org Biomol Chem ; 19(10): 2198-2202, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33625427

RESUMO

Cholesteryl α-d-glucosides (αGCs) are unique metabolic products of the cancer-causing human pathogen Helicobacter pylori. Via signalling through the Macrophage inducible C-type lectin (Mincle) and the induction of a pro-inflammatory response, they are thought to play a role in the development of gastric atrophy. Herein, we prepared the first library of steryl d-glucosides and determined that they preferentially signal through the carbohydrate recognition domain of human Mincle, rather than the amino acid consensus motif. Lipidated steryl d-glucosides exhibited enhanced Mincle agonist activity, with C18 cholesteryl 6-O-acyl-α-d-glucoside (2c) being the most potent activator of human monocytes. Despite exhibiting strong Mincle signalling, sito- (5b) and stigmasterol glycosides (6b) led to a poor inflammatory response in primary cells, suggesting that Mincle is a potential therapeutic target for preventing H. pylori-mediated inflammation and cancer.


Assuntos
Colesterol/análogos & derivados , Glucosídeos/farmacologia , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Linhagem Celular , Colesterol/síntese química , Colesterol/farmacologia , Glucosídeos/síntese química , Humanos , Lectinas Tipo C/química , Proteínas de Membrana/química , Camundongos , Monócitos/efeitos dos fármacos , Domínios Proteicos , Receptores Imunológicos/química , Transdução de Sinais/efeitos dos fármacos
15.
Free Radic Res ; 55(4): 416-440, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33494620

RESUMO

Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.


Assuntos
Oxisteróis/metabolismo , Proteínas/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Animais , Colesterol/análogos & derivados , Colesterol/química , Colesterol/metabolismo , Humanos , Oxisteróis/química , Proteínas/química
16.
Br J Pharmacol ; 178(16): 3248-3260, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32696532

RESUMO

Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRß) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Colesterol/análogos & derivados , Feminino , Humanos , Redes e Vias Metabólicas
17.
Angew Chem Int Ed Engl ; 60(10): 5193-5198, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252821

RESUMO

All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.


Assuntos
Amino Açúcares/síntese química , Amino Açúcares/farmacologia , Amino Açúcares/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacologia , Colesterol/toxicidade , Glicosilação , Humanos
18.
Blood ; 137(18): 2495-2508, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33197938

RESUMO

The human fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) axis deregulation is largely involved in supporting the pathogenesis of hematologic malignancies, including Waldenström macroglobulinemia (WM). WM is still an incurable disease, and patients succumb because of disease progression. Therefore, novel therapeutics designed to specifically target deregulated signaling pathways in WM are required. We aimed to investigate the role of FGF/FGFR system blockade in WM by using a pan-FGF trap molecule (NSC12). Wide-transcriptome profiling confirmed inhibition of FGFR signaling in NSC12-treated WM cells; unveiling a significant inhibition of MYD88 was also confirmed at the protein level. Importantly, the NSC12-dependent silencing of MYD88 was functionally active, as it led to inhibition of MYD88-driven pathways, such as BTK and SYK, as well as the MYD88-downstream target HCK. Of note, both canonical and noncanonical NF-κB cascades were downregulated in WM cells upon NSC12 treatment. Functional sequelae exerted by NSC12 in WM cells were studied, demonstrating significant inhibition of WM cell growth, induction of WM cell apoptosis, halting MAPK, JAK/STAT3, and PI3K-Akt pathways. Importantly, NSC12 exerted an anti-WM effect even in the presence of bone marrow microenvironment, both in vitro and in vivo. Our studies provide the evidence for using NSC12 as a specific FGF/FGFR system inhibitor, thus representing a novel therapeutic strategy in WM.


Assuntos
Biomarcadores Tumorais/metabolismo , Colesterol/análogos & derivados , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Macroglobulinemia de Waldenstrom/prevenção & controle , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Colesterol/farmacologia , Perfilação da Expressão Gênica , Humanos , Camundongos , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/metabolismo , Macroglobulinemia de Waldenstrom/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317057

RESUMO

Lung cancer represents an extremely diffused neoplastic disorder with different histological/molecular features. Among the different lung tumors, non-small-cell lung cancer (NSCLC) is the most represented histotype, characterized by various molecular markers, including the expression/overexpression of the fibroblast growth factor receptor-1 (FGFR1). Thus, FGF/FGFR blockade by tyrosine kinase inhibitors (TKi) or FGF-ligand inhibitors may represent a promising therapeutic approach in lung cancers. In this study we demonstrate the potential therapeutic benefit of targeting the FGF/FGFR system in FGF-dependent lung tumor cells using FGF trapping (NSC12) or TKi (erdafitinib) approaches. The results show that inhibition of FGF/FGFR by NSC12 or erdafitinib induces apoptosis in FGF-dependent human squamous cell carcinoma NCI-H1581 and NCI-H520 cells. Induction of oxidative stress is the main mechanism responsible for the therapeutic/pro-apoptotic effect exerted by both NSC12 and erdafitinib, with apoptosis being abolished by antioxidant treatments. Finally, reduction of c-Myc protein levels appears to strictly determine the onset of oxidative stress and the therapeutic response to FGF/FGFR inhibition, indicating c-Myc as a key downstream effector of FGF/FGFR signaling in FGF-dependent lung cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colesterol/análogos & derivados , Colesterol/farmacologia , Colesterol/uso terapêutico , Regulação para Baixo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
20.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081156

RESUMO

In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer's disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of ß-sitosterol, stigmasterol and campesterol, with ß-sitosterol being the main component. Neurite outgrowth-promoting activities of ß-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. ß-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (ß-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that ß-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by ß-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. ß-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Helianthus/química , Extratos Vegetais/farmacologia , Doença de Alzheimer/genética , Animais , Encéfalo/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator de Crescimento Neural/genética , Neuritos/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Células PC12 , Fitosteróis/farmacologia , Extratos Vegetais/química , Ratos , Sementes/química , Sitosteroides/farmacologia , Estigmasterol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA